

DATA SHEET

# HEAVY-DUTY NITRITED EG-HTF

Ethylene Glycol-Based Industrial Heat Transfer Fluid and Stationary Engine Coolant Concentrate

Our heavy-duty, nitrited, ethylene glycol-based heat transfer fluid (HTF) is designed for use in stationary engine applications.

It contains a full complement of heavy-duty inhibitors, including a minimum of 2400 ppm nitrite (as NO2) in concentrate. The formulation is silicate- and phosphate-free, which minimizes the problems associated with hot surface scaling that can occur with other fluids.

## CORROSION, FREEZE AND BURST PROTECTION

HD Nitrited EG-HTF contains an advanced inhibitor system that protects all system metals. These inhibitors, combined with the glycol base, ensure yearround protection against freezeups, boil-overs, and engine cooling system corrosion. This heat transfer fluid also provides outstanding protection from cavitation erosion and corrosion in water pumps and wet sleeve cylinder liners.

### BENEFITS

This fluid is ideal for applications

that require a heavy-duty, silicate-free coolant to:

- Disperse minor oil leakage
- Prevent fouling
- Control hot surface scaling
- Provide peak performance without damage to paint or rubber

#### **APPLICATIONS**

- Oil and gas facilities
- Natural gas processing
- Power generation
- Compressor engines

## INDUSTRY STANDARDS

This heavy-duty HTF meets the following industry specifications:

- ASTM D6210 (Heavy-Duty Diesel Engine Coolant Specification)
- ASTM D4985 (Heavy-Duty Diesel Low Silicate)
- ASTM D3306 (Light-Duty Engine Coolant Specification, Including D1384)

It's recommended for use in these and other engines:

 Cummins CES14603 (as found in service bulletin 3666132-02)

- Cummins 90T8-4
- John Deere H24
- EMD M.I. 1748E
- Caterpillar DEAC
- Waukesha 4-1974D

## RECOMMENDATIONS FOR DILUTION

Water used to dilute the HD nitrited EG-HTF concentrate can be low-hardness city water or well water, although the use of deionized water is best. We recommend you use water with no more than 350 ppm hardness to dilute concentrate or as make-up water. For optimal performance, water hardness should be below 170 ppm as CaCO3.

Note: Used heat transfer fluids in most states are not considered hazardous unless they contain more than five ppm of lead. We recommend that you never dispose of spent fluid by dumping it into a storm sewer or onto the ground. Instead, contact your local municipality for instructions on where to and how to properly dispose of this fluid and protect our environment. of a propyleneglycol base that reduces toxicity and disposal requirements.

| Physical Properties               |        |              |          | Francisco Deint |     | Deilie - Deinst |     |
|-----------------------------------|--------|--------------|----------|-----------------|-----|-----------------|-----|
| Antifreeze Glycols                | Mass % | 95.0 Minimum | % EG     | Freezing Point  |     | Boiling Point*  |     |
| Corrosion Inhibitors<br>and Water | Mass % | 5.0 Maximum  | (Volume) | °F              | °C  | °F              | °C  |
| Flash Point                       | °F     | >200°F       |          |                 |     |                 |     |
| Weight per gallon at              | lbs.   | 9.35 Minimum | 50%      | -36             | -38 | 226             | 108 |
| 60° F-16° C                       |        |              | 60%      | -59             | 51  | 232             | 111 |
| Silicates                         | Mass % | Nil          | 60%      | -39             | 51  | 232             | 111 |

\*Boiling point shown at atmospheric pressure. Add 40°F for 15 psi radiator cap.

# HD Nitrited EG-HTF Characteristics

| Characteristic            | Specification                                 | Company Typical | ASTM Method |  |
|---------------------------|-----------------------------------------------|-----------------|-------------|--|
| Chloride (ppm)            | 25 Maximum                                    | 2               | D3634       |  |
| Specific gravity, 60/60°F | 1.110-1.145                                   | 1.125           | D1122       |  |
| Nitrite (ppm)             | 2400 Minimum                                  | 2700            | D5827       |  |
| Boiling Point, 50% V/V    | 226°F/108°C                                   | 226°F           | D1120       |  |
| Freezing Point, 50% V/V   | -34°F/-36°C Minimum                           | -36°F           | D1177       |  |
| Ash content, mass %       | 2.5 Maximum                                   | 2.0             | D1119       |  |
| pH, 50% V/V               | 9.5-10.8                                      | 10.3            | D1287       |  |
| Reserve alkalinity*       | None specified                                | 10 Minimum      | D1121       |  |
| Water mass %              | None specified                                | 2.0 Maximum     | D1123       |  |
| Color                     |                                               | Blue            | -           |  |
| Storage stability         | None specified                                | > 1 year        | -           |  |
| Foaming                   | 150 mL vol., Maximum<br>5 sec. break, Maximum | Pass            | D1881       |  |

\*Reserve alkalinity (RA) is a value agreed between the customer and supplier. The RA listed above is thetypical for the additive package being used.

